Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

نویسندگان

  • Grégoire Walckiers
  • Benjamin Fuchs
  • Jean-Philippe Thiran
  • Juan R Mosig
  • Claudio Pollo
چکیده

Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electric field distribution in a finite-volume head model of deep brain stimulation.

This study presents a whole-head finite element model of deep brain stimulation to examine the effect of electrical grounding, the finite conducting volume of the head, and scalp, skull and cerebrospinal fluid layers. The impedance between the stimulating and reference electrodes in the whole-head model was found to lie within clinically reported values when the reference electrode was incorpor...

متن کامل

Consideration of Individual Brain Geometry and Anisotropy on the Effect of tDCS

Introduction: The response variability between subjects, which is one of the fundamental challenges facing transcranial direct current stimulation (tDCS), can be investigated by understanding how the current is distributed through the brain. This understanding can be obtained by means of computational methods utilizing finite element (FE) models. Materials and Methods: In this study, the effect...

متن کامل

Deep Brain Stimulation in Parkinson’s Disease

In some regards, the surgical procedures for the different targets are similar. The target can be located using a combination of imaging (MRI, C T, ventriculography, depending on the centre) and electrophysiology (electrical stimulation and, in some centres, microrecordings). Implantation of the electrode is generally performed under local anaesthesia to allow the evaluation of the effect of th...

متن کامل

Relationship of the P Angle with Stereotactic Arc in Intraoperative Outcome of Patients with Parkinson’s Disease Undergoing Deep Brain Stimulation

Background & Aim: DBS (deep brain stimulation) is a new and successful technique in treatment of symptoms of Parkinsonism especially after drug resistance. Research in this field is mostly designed for evolution of this technique. The present study aimed at evaluating the relationship between the angle formed in midsagittal and STN (sub-thalamic nucleus) axis line and recording l...

متن کامل

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

A novel depth electrode placement planning strategy is presented for calculating a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element method (FEM) models derived from magnetic resonance imaging (MRI) and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 186 1  شماره 

صفحات  -

تاریخ انتشار 2010